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Abstract: We investigate gravitational collapse in the context of quantum mechanics.

We take primary interest in the behavior of the collapse near the horizon and near the

origin (classical singularity) from the point of view of an infalling observer. In the absence

of radiation, quantum effects near the horizon do not change the classical conclusions for

an infalling observer, meaning the horizon is not an obstacle for him. However, quantum

effects are able to remove the classical singularity at the origin, since the wave function is

non-singular at the origin. Also, near the classical singularity, some non-local effects become

important. In the Schrodinger equation describing behavior near the origin, derivatives of

the wave function at one point are related to the value of the wave function at some other

distant point.
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1. Introduction

Of the four fundamental interactions in nature, gravity is by far the weakest. For this

reason, we can hope to see quantum effects only in the vicinity of classical singularities.

Penrose and Hawking [1] have shown that these singularities are endemic in general rela-

tivity. However, the question arises whether they are an intrinsic property of space-time or

simply reflect our lack of the ultimate non-singular theory. A singularity often represents

a signal that the theory has been extrapolated outside its domain of validity. The general

belief is that quantization will rid gravitation of singularities, just as in atomic physics

it got rid of the singularity of the Coulomb potential which has an identical 1/r behav-

ior [2 – 5]. If this is indeed the case, this information must be encoded in the wave function

describing the collapsing object. There are also some reasons to believe that inherently

quantum non-local effects should become important in the strong gravity regime, i.e. near

the classical singularity. These effects might be associated with the possible resolution of

the information loss paradox [6 – 9].

There are additional reasons to study quantum effects in gravitational collapse even in

the regions far from the origin. Properties of the classical Schwarzschild solution are very

well understood. If an asymptotic observer throws something down a pre-existing black

hole, he will never see it crossing the horizon since it takes infinite time ∆t according to

his clock. If R0 is the position of a fixed outside observer then

∆t =

∫ R0

RS

dr

1 − RS

r

→ ∞ . (1.1)
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The integral is obviously divergent at the lower limit. For the same reason, an asymptotic

observer will never see the formation of a black hole. Thus, an asymptotic observer will

never see any effects strictly associated with an event horizon: all of such signals (light rays

or gravitational waves) will be infinitely redshifted. Thus, one can study the effects arising

in near horizon region but could never probe the horizon itself. This includes black holes

in the centers of galaxies, black hole mergers, accretion of material onto black holes, x-ray

bursts etc. This fact is often ignored. The hope is that quantum mechanics will make the

time finite even for an asymptotic observer.

How can quantum mechanics be important for large macroscopic black holes? If one

includes quantum fluctuations, the position of a horizon is not fixed. Then, instead of

RS one can write RS + δRS , where δRS represent small fluctuations in the position of a

horizon. This can make the time as measured by an asymptotic observer finite (see e.g.

section 10.1.5 of [10])):

∆t =

∫ R0

RS+δRS

dr

1 − RS

r

∼ RS ln

(

R0 − RS

δRS

)

. (1.2)

If this were true, it would have a profound importance for astrophysical observations. We

would be able to observe black hole formation and other effects in finite time. Note however

that fluctuations can go either way, i.e. RS should get replaced by RS ± δRS . In the case

of RS − δRS , the result becomes infinite again. This points out that a careful analysis of

gravitational collapse in the context of quantum mechanics is needed. This question was

investigated in [11], from the point of view of an asymptotic observer. The conclusion was

(with some caveats) that an asymptotic observer does not see a collapsing object crossing

its own Schwarzschild radius even when quantum effects are taken into account.

In this paper we address the question of gravitational collapse in the context of quantum

mechanics as seen by an infalling observer. We model the collapsing body with a shell which

is effectively described by a spherically symmetric domain wall. The reason for that is the

existence of a well defined relativistic Lagrangian and Hamiltonian for such a system which

can be quantized straightforwardly.

In section 2 we adopt the Wheeler-de Witt approach to quantum gravity and define the

framework. For all practical purposes in our case of interest, this formalism is equivalent

to the functional Schrodinger formalism. In section 3 we review the recent results obtained

in [11] for an asymptotic observer. In section 4 we study classical collapse from the point of

view of an infalling observer (an observer who is falling together with the collapsing shell).

The most important results are presented in section 5 where we study collapse from the

point of view of an infalling observer in the context of quantum mechanics. In section 5.1

we explore quantum effects in near horizon limit for an infalling observer and show that,

in the absence of quantum radiation, classical conclusions remain true, i.e. horizon is no

obstacle for an infalling observer. In section 5.2 we explore quantum effects near the origin

(i.e. classical singularity) and demonstrate two results: a) the wave function describing

the collapsing shell is non-singular at the origin, and b) the non-local effects, which were

absent at large distances, become unsuppressed in this near the origin regime.

– 2 –
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We emphasis that we do not study quantum radiation of the fields propagating in the

background of a collapsing object which may introduce some new elements. Our conclusions

are summarized in section 6. This question will be studied in [12].

2. Setup and formalism

The Wheeler-de Witt equation [13] in its general form is

HΨ = 0 (2.1)

where H is the Hamiltonian and Ψ[Xα, gµν ,O] is the wave-functional for all the ingredients

of the system - collapsing object, space-time metric, even the observer’s degrees of freedom

(denoted by O). We will separate the Hamiltonian into two parts, one for the system and

the other for the observer

H = Hsys + Hobs (2.2)

Any weak interaction terms between the observer and the system are included in Hsys.

The observer is assumed not to significantly affect the evolution of the system. The total

wave-functional can be written as a sum over eigenstates

Ψ =
∑

k

ckΨ
k
sys(sys, t)Ψk

obs(O, t) (2.3)

where k labels the eigenstates, ck are complex coefficients, and we have introduced the

observer time, t, via

i
∂Ψk

obs

∂t
≡ HobsΨ

k
obs (2.4)

With the help of an integration by parts, and the fact that the total wave-functional is

independent of t, the Wheeler-de Witt equation implies the Schrodinger equation

HsysΨ
k
sys = i

∂Ψk
sys

∂t
(2.5)

For convenience, from now on we will denote the system wave-function simply by Ψ and

drop the superscript k and the subscript “sys”. Similarly H will now denote Hsys, and the

Schrodinger equation reads

HΨ = i
∂Ψ

∂t
(2.6)

3. Asymptotic observer

A general treatment of the full Wheeler-de Witt equation is very difficult and we truncate

the field degrees of freedom to a finite subset. In other words, we will consider a minisuper-

space version of the Wheeler-de Witt equation. In particular, we only consider spherical

domain wall representing spherical shell of collapsing matter. This implies that the wall is

described by only the radial degree of freedom, R(t). The metric is taken to be the solution

– 3 –
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of Einstein equations for a spherical domain wall. The metric is Schwarzschild outside the

wall, as follows from spherical symmetry [14]

ds2 = −
(

1 − RS

r

)

dt2 +

(

1 − RS

r

)−1

dr2 + r2dΩ2 , r > R(t) (3.1)

where, RS = 2GM is the Schwarzschild radius in terms of the mass, M , of the wall, and

dΩ2 = dθ2 + sin2 θdφ2 (3.2)

In the interior of the spherical domain wall, the line element is flat, as expected by Birkhoff’s

theorem,

ds2 = −dT 2 + dr2 + r2dθ2 + r2 sin2 θdφ2 , r < R(t) (3.3)

The equation of the wall is r = R(t). The interior time coordinate, T , is related to the

asymptotic observer time coordinate, t, via the proper time of an observer moving with

the shell, τ . The relations are

dT

dτ
=

[

1 +

(

dR

dτ

)2
]1/2

(3.4)

and

dt

dτ
=

1

B

[

B +

(

dR

dτ

)2
]1/2

(3.5)

where

B ≡ 1 − RS

R
(3.6)

By integrating the equations of motion for the spherical domain wall, Ipser and

Sikivie [14] found that the mass is a constant of motion and is given by

M =
1

2
[
√

1 + R2
τ +

√

B + R2
τ ]4πσR2 (3.7)

where Rτ = dR/dτ , while σ is the surface tension (energy density per unit area) of the

wall. It is assumed that max(R) < (4πGσ)−1 to avoid the case in which the domain wall

is already within its own Schwarzschild radius to begin with. This expression for M is

implicit since RS = 2GM occurs in B. Solving for M explicitly in terms of Rτ gives

M = 4πσR2[
√

1 + R2
τ − 2πGσR]. (3.8)

3.1 Classical collapse as viewed by an asymptotic observer

The effective Lagrangian describing gravitational collapse of the spherical shell consistent

with (3.8) was derived in [11]

Leff = −4πσR2





√

B − Ṙ2

B
− 2πGσR

√

B − 1 − B

B
Ṙ2



 (3.9)
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where Ṙ = dR/dt. The generalized momentum, Π, can be derived from eq. (3.9)

Π =
4πσR2Ṙ√

B





1
√

B2 − Ṙ2
− 2πGσR(1 − B)

√

B2 − (1 − B)Ṙ2



 (3.10)

The Hamiltonian (in terms of Ṙ) is

H = 4πσB3/2R2





1
√

B2 − Ṙ2
− 2πGσR

√

B2 − (1 − B)Ṙ2



 (3.11)

To obtain H as a function of (R,Π), we need to eliminate Ṙ in favor of Π using

eq. (3.10). This can be done but is messy, requiring solutions of a quartic polynomial.

Instead we consider the limit when R is close to RS and hence B → 0. In this limit the

denominators of the two terms in eq. (3.11) are equal and

Π ≈ 4πµR2Ṙ
√

B
√

B2 − Ṙ2
(3.12)

where

µ ≡ σ(1 − 2πGσRS) (3.13)

and

H ≈ 4πµB3/2R2

√

B2 − Ṙ2
(3.14)

=
[

(BΠ)2 + B(4πµR2)2
]1/2

(3.15)

The Hamiltonian has the form of the energy of a relativistic particle,
√

p2 + m2, with a

position dependent mass.

The Hamiltonian is a conserved quantity and so, from eq. (3.14),

B3/2R2

√

B2 − Ṙ2
= h (3.16)

where h = H/4πµ is a constant. (Up to the approximation used to obtain the simpler form

of the Hamiltonian in eq. (3.14), the Hamiltonian is the conserved mass.)

Solving eq. (3.16) for Ṙ we get

Ṙ = ±B

(

1 − BR4

h2

)1/2

, (3.17)

which, near the horizon, takes the form

Ṙ ≈ ±B

(

1 − 1

2

BR4

h2

)

(3.18)

since B → 0 as R → RS.
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The dynamics for R ∼ RS can be obtained by solving the equation Ṙ = ±B. To

leading order in R − RS , the solution is

R(t) ≈ RS + (R0 − RS)e±t/RS . (3.19)

where R0 is the radius of the shell at t = 0. As we are interested in the collapsing solution,

we choose the negative sign in the exponent. This solution implies that, from the classical

point of view, the asymptotic observer never sees the formation of the horizon of the black

hole, since R(t) = RS only as t → ∞. Thus, the time needed for a collapsing object to cross

its own Schwarzschild radius is infinite from a point of view of a static outside observer.

3.2 Quantum collapse as viewed by an asymptotic observer

The classical Hamiltonian in eq. (3.15) has a square root and so we first consider the

squared Hamiltonian

H2 = BΠ BΠ + B(4πµR2)2 (3.20)

where we have made a choice for ordering B and Π in the first term. Now we apply the

standard quantization procedure. We substitute

Π = −i
∂

∂R
(3.21)

in the squared Schrodinger equation,

H2Ψ = −∂2Ψ

∂t2
(3.22)

Then

−B
∂

∂R

(

B
∂Ψ

∂R

)

+ B(4πµR2)2Ψ = −∂2Ψ

∂t2
(3.23)

To solve this equation, define

u = R + RS ln

∣

∣

∣

∣

R

RS
− 1

∣

∣

∣

∣

(3.24)

which gives

BΠ = −i
∂

∂u
(3.25)

eq. (3.22) then gives
∂2Ψ

∂t2
− ∂2Ψ

∂u2
+ B(4πµR2)2Ψ = 0 (3.26)

This is just the massive wave equation in a Minkowski background with a mass that depends

on the position. Note that R needs to be written in terms of the coordinate u and this

can be done (in principle) by inverting eq. (3.24). However, care needs to be taken to

choose the correct branch since the region R ∈ (RS ,∞) maps onto u ∈ (−∞,+∞) and

R ∈ (0, RS) onto u ∈ (0,−∞).

We are interested in the situation of a collapsing shell. In the region R ∼ RS , the

logarithm in eq. (3.24) dominates and

R ∼ RS + RSeu/RS

– 6 –
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We look for wave-packet solutions propagating toward RS , that is, toward u → −∞. In

this limit

B ∼ eu/RS → 0

and the last term in eq. (3.26) can be ignored. Wave packet dynamics in this region is

simply given by the free wave equation and any function of light-cone coordinates (u± t) is

a solution. In particular, we can write a Gaussian wave packet solution that is propagating

toward the Schwarzschild radius

Ψ =
1√
2πs

e−(u+t)2/2s2

(3.27)

where s is some chosen width of the wave packet in the u coordinate. The width of the

Gaussian wave packet remains fixed in the u coordinate while it shrinks in the R coordinate

via the relation dR = Bdu which follows from eq. (3.24). This fact is of great importance,

since if the wave packet remained of constant size in R coordinates, it might cross the event

horizon in finite time.

The wave packet travels at the speed of light in the u coordinate – as can be seen

directly from the wave equation eq. (3.26) or from the solution, eq. (3.27). However, to

get to the horizon, it must travel out to u = −∞, and this takes an infinite time. So we

conclude that the quantum domain wall does not collapse to RS in a finite time, as far as

the asymptotic observer is concerned, so that quantum effects considered here do not alter

the classical result that an asymptotic observer does not observe the formation of an event

horizon.

This analysis leaves room for a non-local process by which the wave packet can jump

from the (RS ,∞) region to the (0, RS) region, without ever going through RS , since the

region R ∈ (RS ,∞) maps onto u ∈ (−∞,+∞) and R ∈ (0, RS) onto u ∈ (0,−∞). Note

that this process would be quite different from tunneling through a barrier.

We end this section with the remark that quantum Hawking emission makes the lifetime

of the black hole finite. Therefore, asymptotic observers will not see infalling matter

hovering over the horizon for an infinite time. From the point of view of outside observers,

the evaporation process and the resulting semi-classical geometry can be described in terms

of a stretched horizon [15, 16] rather than focusing on the event horizon. In this simple

physical picture infalling matter never passes through the event horizon but is instead

absorbed into the stretched horizon, thermalized, and eventually re-emitted as part of the

Hawking radiation.

4. Classical collapse as viewed by an infalling observer

We now change the observer and study what an observer who is falling together with

the shell (i.e. an infalling observer) would see. The effective action consistent with the

conserved quantity (3.8) is

Seff = −4πσ

∫

dτR2
[

√

1 + R2
τ − Rτ sinh−1(Rτ ) − 2πσGR

]

. (4.1)

– 7 –
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Therefore the effective Lagrangian expressed in terms of the infalling observer’s time τ is

given by

Leff = −4πσR2
[

√

1 + R2
τ − Rτ sinh−1(Rτ ) − 2πσGR

]

. (4.2)

The generalized momentum, Π, can be derived from eq. (4.2)

Π = 4πσR2 sinh−1(Rτ ). (4.3)

The Hamiltonian (in terms of Rτ ) is

H = 4πσR2
[

√

1 + R2
τ − 2πσGR

]

(4.4)

which is just eq. (3.8). Let us briefly comment on the physical meaning of the Hamilto-

nian (4.4). For a static shell, i.e. Rτ = 0, the first term in square brackets is just the total

rest mass of the shell. For a moving shell, Rτ 6= 0 takes kinetic energy into account. The

last term in square brackets is the self-gravity, since in this formalism the collapsing shell

is both the source of the gravitational field and the matter that is collapsing.

From (4.4) we can calculate Rτ

Rτ = ±

√

(

h

R2
+ 2πσGR

)2

− 1 (4.5)

where h = H/(4πσ). In our formalism, the Hamiltonian is just the conserved mass, H = M

(the value of which can be viewed as an initial condition). When the shell comes close to

its own Schwarzschild radius, i.e. R ≈ RS , this equation can be further simplified. If we

are interested only in the zeroth order behavior near the Schwarzschild radius we can set

R = RS in (4.5). This gives us

Rτ = ±

√

(

h

R2
S

+ 2πσGRS

)2

− 1 (4.6)

which can be integrated to give

R = R0 − τ

√

(

h

R2
S

+ 2πσGRS

)2

− 1 (4.7)

where R0 is the radius of the shell at τ = 0. The solution implies that the infalling observer

will reach RS in a finite amount of his proper time, which is expected from classical general

relativity.

5. Quantum collapse as viewed by an infalling observer

5.1 Quantum treatment of gravitational collapse near the horizon

Now we turn to quantum treatment of gravitational collapse as viewed by an infalling

observer. The exact Hamiltonian (in terms of Rτ ) is again (4.4)

H = 4πσR2
[

√

1 + R2
τ − 2πσGR

]

(5.1)

– 8 –
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In this section, we will quantize this Hamiltonian near the Schwarzschild radius and in

the limit where Rτ is small. This is indeed a restriction to the special motion of the wall,

since in general Rτ can be large near RS if the shell is falling from a very large distance.

However, one may always choose initial conditions in such a way that the initial position

of the shell R(τ = 0) is very close to RS.

In the limit of small Rτ and R → RS the Hamiltonian simplifies to

H = 4πσR2
S

[

1 +
1

2
R2

τ − 2πσGRS

]

(5.2)

In the same limit, the momentum (4.3) simplifies to

Π = 4πσR2
SRτ (5.3)

Dropping the constant terms form the Hamiltonian we get

H =
Π2

8πσR2
S

. (5.4)

Using the standard quantization procedure, we substitute

Π = −i
∂

∂R
(5.5)

into the Schrödinger equation,

HΨ = i
∂Ψ

∂τ
. (5.6)

This gives us

− 1

8πσR2
S

∂2Ψ

∂R2
= i

∂Ψ

∂τ
. (5.7)

This is just the Schrodinger equation for a freely propagating ”particle” of mass 4πσR2
S , as

we expected in this approximation. Since RS is only a finite distance away for an infalling

observer we conclude that quantum effects do not alter the classical result - a collapsing

shell crosses its own Schwarzschild radius in a finite proper time.

5.2 Quantum treatment of gravitational collapse near the origin

In this section we investigate the most important question of quantum effects when the

collapsing shell approaches the origin (i.e. classical singularity at R → 0). The exact

Hamiltonian (in terms of Rτ ) is again

H = 4πσR2
[

√

1 + R2
τ − 2πσGR

]

(5.8)

while exact value of Rτ is

Rτ = ±

√

(

h

R2
+ 2πσGR

)2

− 1 (5.9)

– 9 –
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Near the origin, i.e. in the limit of R → 0 the classical solution for Rτ (keeping only the

leading order term) becomes

Rτ ≈ − h

R2
. (5.10)

where h = H/(4πσ), while the Hamiltonian is just the conserved mass H = M . This

implies that, up to the leading term near the origin, the Hamiltonian is

H = 4πσR2Rτ . (5.11)

Substituting the asymptotic behavior (5.10) in the expression for the generalized momen-

tum

Π = 4πσR2 sinh−1(Rτ ). (5.12)

we learn that

lim
R→0

Π = 0 (5.13)

and

lim
R→0

Π

4πσR2
= −∞. (5.14)

This implies that Rτ defined as

Rτ = sinh

(

Π

4πσR2

)

, (5.15)

near the origin becomes

Rτ =
1

2
exp

(

− Π

4πσR2

)

. (5.16)

Therefore we can write the Schrödinger equation as

2πσR2 exp

(

i

4πσR2

∂

∂R

)

Ψ(R, τ) = i
∂Ψ(R, τ)

∂τ
. (5.17)

In eq. (5.17), the differential operator in the exponent gives some unusual properties

to the equation. Note that if we expand the exponent we can not stop the series after

the finite number of terms but need to include all of the terms. This means that we need

to include an infinite number of derivatives of the wave function Ψ into the differential

equation. An infinite number of derivatives of a certain function uniquely specifies the

whole function. Thus, the value of (the derivative of) the function on the right hand side

of eq. (5.17) at one point depends on the values of the function at different points on the left

hand side of the same equation. This is in strong contrast with ordinary local differential

equations where the value of the function and certain finite number of its derivatives are

related at the same point of space. This indicates that eq. (5.19) describes physics which

is not strictly local.

With the simple change of variables we can make this argument more transparent. If

we introduce a new variable u = R3, eq. (5.17) becomes

2πσu2/3 exp

(

3i

4πσ

∂

∂u

)

Ψ(u, τ) = i
∂Ψ(u, τ)

∂τ
. (5.18)

– 10 –
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The differential operator in the exponent is just a translation operator which shifts the

argument of the wave function by a non-infinitesimal amount of 3i/(4πσ). Since the wave

function is complex in general, a shift by a complex value is not a problem. Therefore

eq. (5.17) can be written as

2πσu2/3Ψ

(

u +
3i

4πσ
, τ

)

= i
∂Ψ(u, τ)

∂τ
. (5.19)

The wave function near the origin Ψ(R → 0, τ) is in fact related to the wave function

at some distant point Ψ(R → ( 3i
4πσ )1/3, τ). This effect is non local and may have some

implications for the information loss paradox [6 – 9]. At large distances far from the origin,

non-local effects were absent (at least in the approximation we used) as can be seen from

eq. (5.3) which gives a linear relation between the generalized velocity and the generalized

momentum. However, in the last stages of the collapse, when R → 0, these effects become

important. Eq. (5.16) contains the generalized momentum (and thus the derivatives) in

the exponent which makes the Schrodinger equation non-local. From eq. (5.19) we see that

non-locality depends on the wall surface tension σ. For the light walls (small σ) non-locality

is stronger, while large σ suppresses it. However, the suppression can not be arbitrary large

since the condition bounding σ from above (given below eq. (3.7)) must be satisfied.

While it is possible that the whole formalism breaks down at the very short distances

of the order of Planck length, it is obvious that there will be a regime in which non-local

effects are important.

Eq. (5.19) also implies that the wave function describing the collapsing shell is non-

singular at the origin. Indeed, in the limit of R → 0, this equation becomes

∂Ψ(R → 0, τ)

∂τ
= 0 (5.20)

where we used the fact that the wave function at some finite R, i.e. Ψ(R → ( 3i
4πσ )1/3, τ), is

finite. From eq. (5.20) then follows that Ψ(R → 0) = const. Non-singularity of the wave

function describing the collapsing object at the origin is very important knowing that the

origin represents the classical singularity and it is the source of most of the problems and

paradoxes in black hole physics. Some consequences will be discussed in conclusions.

6. Conclusions

We studied gravitational collapse of the spherically symmetric shell of matter represented

by a thin spherical domain wall in the context of quantum mechanics. We employed the

inherently quantum functional Schrodinger formalism, which can be readily incorporated

into the Wheeler-de Witt formalism. We examined most of the cases of interest.

In the literature, there exist some arguments that quantum effects near the horizon

might change what an asymptotic observer would see in gravitational collapse. In partic-

ular, it was argued that the quantum fluctuations can make the collapse time finite for a

static outside observer. However, it appears that, at least in the framework of the func-

tional Schrodinger formalism, quantum effects do not change the conclusions of classical
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general relativity, i.e. it takes infinite time according to the asymptotic observer’s clock for

the collapsing shell to cross its own Schwarzschild radius. This is the conclusion valid only

in the absence of quantum radiation. Hawking radiation of course makes the lifetime of the

black hole finite and asymptotic observers will see infalling matter accumulated onto the

stretched horizon [15, 16], thermalized, and eventually re-emitted as part of the Hawking

radiation.

Results from the point of view of an infalling observer (an observer who is falling

together with the collapsing shell) are of special interest. We first investigated what an

infalling observer would see when the shell is crossing its own Schwarzschild radius. To

do that, we explored quantum effects in near horizon limit for an infalling observer and

showed that, in the absence of quantum radiation, classical conclusions remain true, i.e.

horizon is no obstacle for an infalling observer.

Finally, we explored quantum effects near the origin (i.e. classical singularity) from the

point of view of an infalling observer. There are two important effects to be mentioned.

First, the wave function describing the collapsing shell is non-singular at the origin. This

is in agreement with the expectation that quantization will rid gravity of singularities, just

as in atomic physics it got rid of the singularity of the Coulomb potential which has an

identical classical 1/r behavior. If the singularity at the origin is really erased, than most

of the assumed properties of the black holes need to be re-thought. In particular, once we

include quantum radiation, a collapsing object (or a black hole) will lose all of its energy

in finite time. However, in the absence of the true singularity at the center, a horizon

formed during the collapse can not be a true global event horizon. In other words, in the

absence of the singularity, a “black hole” may trap the light and other particles for some

finite amount of time, but not forever (nor is the information lost down the singularity).

This has profound implications for black hole physics.

Second, the quantum equation that governs physics near the classical singularity seems

to be non-local. The Schrodinger equation describing the collapsing object contains an

infinite number of derivatives. The dynamics of the wave function at certain point near the

origin depends on the value of the wave function at some distant point. While these non-

local effects were absent at large distances far from the origin, they become unsuppressed

in the near origin regime. Non-local effects we are finding in our approach may signal two

things. It may be that it is a simple consequence of the fact that the Wheeler-de Witt (or

functional Schrodinger) formalism is only an approximation of some more fundamental local

theory. After all, effective low energy actions are often non-local. The other possibility

is that the quantum description of the black hole physics requires inherently non-local

physics. Answer to this question requires further investigation.
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